Every 2-Segal space is unital

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Banach Space is Reflexive

The title above is wrong, because the strong dual of a Banach space is too strong to assert that the natural correspondence between a space and its bidual is an isomorphism. This, from a categorical point of view, is indeed the right duality concept because it yields a self adjoint dualisation functor. However, for many applications the non–reflexiveness problem can be solved by replacing the n...

متن کامل

Every crowded pseudocompact ccc space is resolvable

We prove that every pseudocompact crowed ccc space is c-resolvable. This gives a partial answer to problems posed by Comfort and Garćıa-Ferriera, and Juhász, Soukup and Szentmiklóssy.

متن کامل

When every $P$-flat ideal is flat

In this paper‎, ‎we study the class of rings in which every $P$-flat‎ ‎ideal is flat and which will be called $PFF$-rings‎. ‎In particular‎, ‎Von Neumann regular rings‎, ‎hereditary rings‎, ‎semi-hereditary ring‎, ‎PID and arithmetical rings are examples of $PFF$-rings‎. ‎In the context domain‎, ‎this notion coincide with‎ ‎Pr"{u}fer domain‎. ‎We provide necessary and sufficient conditions for‎...

متن کامل

Operator space structure on Feichtinger’s Segal algebra

We extend the definition, from the class of abelian groups to a general locally compact group G, of Feichtinger’s remarkable Segal algebra S0(G). In order to obtain functorial properties for non-abelian groups, in particular a tensor product formula, we endow S0(G) with an operator space structure. With this structure S0(G) is simultaneously an operator Segal algebra of the Fourier algebra A(G)...

متن کامل

Almost every 2-SAT function is unate

Bollobás, Brightwell and Leader [2] showed that there are at most 2( n 2)+o(n 2) 2-SAT functions on n variables, and conjectured that in fact almost every 2-SAT function is unate: i.e., has a 2-SAT formula in which no variable’s positive and negative literals both appear. We prove their conjecture, finding the number of 2-SAT functions on n variables to be 2( n 2)+n(1 + o(1)). As a corollary of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Contemporary Mathematics

سال: 2020

ISSN: 0219-1997,1793-6683

DOI: 10.1142/s0219199720500558